Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Halocarbon and arene coordination of lithium(I) in (1-anilino-3-phenyliminopropenyl)chloro(methyl)aluminium bis{[tetrakis(pentafluorophenyl) borato]lithium} benzene solvate

Ilia A. Guzei,^a* Catherine E. Radzewich^b and Richard F. Jordan^b

^aChemistry Department, Iowa State University of Science and Technology, Ames, lowa 50011, USA, and ^bDepartment of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA Correspondence e-mail: iguzei@iastate.edu

Received 9 June 1999 Accepted 21 September 1999

The crystal structure of the title compound, $[AlCl(CH₃)$ - $(C_{15}H_{13}N_2)[Li(C_{24}BF_{20})]_2 \cdot C_6H_6$, is reported. The unusual coordination features of the lithium(I) cation, including Liatom coordination to six organohalogen atoms and the shortest $Li-F(C)$ distances so far observed, are discussed.

Comment

In recent reports, we have described the syntheses and structures of $[HC{CMeN(2,6^{-1}Pr₂Ph)}₂] AlR₂$ and $[HC{CMe N(2.6 - Pr_2Ph)$ ₂]AlR⁺ complexes based on β -diketiminate ligands incorporating bulky N-aryl substituents (Radzewich et al., 1998, 1999, 2000). The cationic species undergo unusual cycloaddition reactions with alkenes and alkynes. During efforts to extend this chemistry to the parent $[HC(CHNPh)₂]$ AlMe⁺ system, we isolated the novel compound $[HC(CHNPh)_2]$ AlMeCl·2 $[Li{B(C_6F_5)_4}]$ ·benzene, (I), the structure of which is described here.

The asymmetric unit consists of one neutral $[HC(CHNPh)₂]$ AlMeCl complex, two $B(C_6F_5)_4$ ⁻ anions, two Li⁺ cations and a benzene solvate molecule. These moieties all participate in long-distance intermolecular interactions to

form a three-dimensional framework of coordination bonds (Fig. 1). Important bond distances are listed in Table 1.

The Al atom possesses a distorted tetrahedral coordination sphere comprised of a methyl group, a Cl atom and the two N atoms of the chelating diketiminate ligand. The angles about the metal center range from 97.79 (10) (N1 $-A1-N2$) to 115.94 (12) \degree (N2 $-A$ l $-C$ 1). Due to the coordination of the Cl atom to the Li1 cation (see below), the $AI-Cl$ distance [2.2136 (11) \AA] is somewhat longer than a typical \AA –Cl bond distance $[2.12 (2)$ Å. The latter value was obtained by averaging the distances of 794 Al –Cl bonds found in compounds listed in the Cambridge Structural Database (CSD; Allen & Kennard, 1993). The Al $-C$ distance [1.924 (3) \AA] is shorter than a typical Al—Me bond distance [1.959 (19) \AA ; 1024 CSD entries], but is very similar to the $AI-C$ distance in $[HC]C-$ MeN(p-tolyl) $\{\}$ AlMe(OSO₂CF₃) [1.928 (6) A²; Qian *et al.*, 1998]. The $Al-N$ bond distances [average 1.884 (2) \overline{Al} fall in the same range as observed for related aluminium diketiminate complexes, e.g. $[HC(CMeN(p-tolv])_2]$ -AlCl₂ [1.850 (2) A, [HC{CMeN(p-tolyl)}₂]AlMe(OSO₂CF₃) [1.875 (4) and 1.873 (4) A], $[HC]CMeN(p-toly1)_2]AlMe_2$ [1.905 (3) and 1.907 (3) \AA] and [HC(CHNPh)₂]AlMe₂ [1.913 (4) Å; Radzewich et al., 1998, 1999, 2000; Qian et al., 1998]. Atoms N1, C2, C3, C4 and N2 of the diketiminate ligand are planar within 0.0316 (3) \AA , and the Al atom is displaced by -0.32 Å out of this plane. The *ipso*-C atoms C5 and C11 of the phenyl rings are displaced by $0.324(4)$ and $0.225(4)$ Å, respectively, on the other side of this plane. The dihedral angles between the phenyl-ring planes and the $N-C-C$ C $-N$ plane are 45.03 (11) and 43.67 (8)°.

This structure presents the first example of an $Li⁺$ cation coordinated to six organohalogen atoms. Moreover, while sixcoordinate Li⁺ usually adopts an octahedral geometry (LiF and LiSb F_6), in (I), Li1 exhibits a distorted trigonal antiprismatic coordination sphere. Atom Li1 interacts with the Cl atom, atoms F36 and F37 of one of the $B(C_6F_5)_4$ ⁻ anions, atoms F24 and F25 of another $B(C_6F_5)_4$ ⁻ anion at $(-x, -y,$ $1-z$), and atom F62 of a third $B(C_6F_5)_4$ ⁻ anion at $(x-1, y, z)$. Atoms F36 and F24 are ortho, F37 and F25 are meta, and F62 is a para substituent on the corresponding phenyl rings (Fig. 2). Although the $Li1-Cl$ interaction results in an elongation of the $AI-Cl$ bond, the $Li1-Cl$ bond distance falls in the middle of the wide range of previously reported Li -Cl distances $(2.169-2.792 \text{ Å}, 162 \text{ CSD entries})$. The Li1–F bond distances vary in the range $2.100(3)-2.246(3)$ Å, with no apparent dependency on the F-atom position on the phenyl group. A CSD search showed that for 58 complexes, the $Li-F$ distances vary in the range 1.771–2.355 A. For comparison, the $Li-F$ distance in crystalline LiF is 2.009 \AA (Wells, 1984), the sum of the ionic radii for Li⁺ (0.60 Å) and F^{-} (1.36 Å) according to Pauling (1960) is 1.96 Å, while the sum of the van der Waals radii for lithium (1.82 Å) and fluorine (1.47 Å) is 3.29 Å (Porterfield, 1998).

Atom Li2 is coordinated to atoms F21 and F22 of one $B(C_6F_5)_4$ ⁻ anion, atoms F57 and F58 of the other $B(C_6F_5)_4$ ⁻ anion and the solvate benzene molecule at $(x-1, y, z)$ in an η^6 fashion (Fig. 3). The $Li2-F$ distances differ considerably; the

Figure 1

The three-dimensional framework formed by coordination bonds in (I).

ortho-F atom of each anion is coordinated more strongly [1.895 (3) \AA for Li2–F22 and 1.956 (3) \AA for Li2–F58] than the *meta*-F atoms [2.436 (3) \AA each]. In fact, the Li2–F22 and Li2–F58 distances are the shortest $Li-F(C)$ interactions reported to date. The shortest distance previously reported was 1.984 (9) \AA in LiAl[OC(Ph)(CF₃)₂]₄ (Barbarich *et al.*, 1996). Conversely, the lengths of the $Li2-F21$ and $Li2-F57$ interactions exceed all other reported values for $Li-F$ bond

Figure 2

The coordination environment of the Li1 atom. The uncoordinated phenyl rings and the H atoms have been omitted for clarity. Displacement ellipsoids are plotted at the 30% probability level.

distances, regardless of whether fluorine is bound to another atom or not. Incidentally, the $Li-F-C$ bond angles around F22 and F58 are 125.60 (16) and 128.14 (17) $^{\circ}$, respectively, while the corresponding values for atoms F21 and F57 are 106.51 (15) and 106.91 (16) $^{\circ}$, respectively. A review of the coordination chemistry of the F(C) unit with respect to lithium can be found in a paper by Plenio (1997). The $Li2-C$ distances [average 2.53 (4) \AA] are appreciably longer than the corresponding distances in other compounds with η^6 -coordinated Li⁺ cations, e.g. 2.38 (5) \AA in [Li{Al(ⁱBu)₂(NMes)}- ${A1(N[C_6H_2(CH_3)_2CH_2])}\|_2$ (Mes = 2,4,6-Me₃C₆H₂; Horchler et al., 1997), 2.32 (4) \AA in $[Li(2,4,6^{-1}Pr_3C_6H_2)]_4$ (Ruhklandt-Senge et al., 1993), 2.34 (3) and 2.35 (7) \AA in $[Li("Bu)]_2$ -

Figure 3

The coordination environment of the Li2 atom. The uncoordinated phenyl rings and the H atoms have been omitted for clarity. Displacement ellipsoids are plotted at the 30% probability level.

?tpbgc=^st_figpar_bgcolour]>(LiMes*)₂ (Mes^{*} = $2,4,6$ -'Bu₃C₆H₂; Ruhklandt-Senge et al., 1993), 2.37 (9) Å in $[Li(^{n}Bu)]_{2}(LiMes^{*})_{2}$ ·Mes^{*}Br (Ruhklandt-Senge et al., 1993), and 2.32 (1)-2.54 (1) \AA in Li₄[P(Me)- $\{CH(C_6H_4)\}_2\}$ 2tmeda (tmeda is N, N, N', N' -tetramethylethylenediamine; Winkler et al., 1994). The elongation of the $Li-C$ bonds in (I) is likely a consequence of the strong coordination of Li2 to F22 and F58.

The B1 $B(C_6F_5)_4$ ⁻ anion coordinates to three Li atoms through two adjacent F atoms in each case. The coordinated atoms are Li1, Li1($-x$, $-y$, $1-z$) and Li2. The B2 B(C_6F_5)₄ anion interacts with two Li atoms, i.e. through a pair of vicinal F atoms to Li1 and with a *para*-F atom F62 to Li1(1+x, y, z). The different coordination environments of the anions do not result in variations of the geometries about the B atoms. The average C $-F$ distance for the F atoms coordinated to Li^+ atoms is somewhat lengthened $[1.372 (11)$ A compared with the other C $-F$ bond distances in (I) [average 1.350 (8) A], however, statistically, these average distances are not significantly different.

Experimental

A glass tube was charged with $[HC(CHNPh)_2]$ AlMe₂ (50 mg, 0.18 mmol; Radzewich et al., 1999, 2000), $(Ph_3C)[B(C_6F_5)_4]$ (0.5 equivalents; 89 mg, 0.090 mmol) and C_6H_6 (10 ml). An orange oil was produced. Hexanes (20 ml) were added resulting in the formation of an orange solid. The tube was then flame sealed and heated to 323 K overnight to produce orange crystals of (I). The formation of (I) is believed to occur by reaction of a cationic aluminium methyl $complex, [HC(CHNPh)_2] A lMe⁺, with an LiCl impurity that is present$ in the neutral starting material.

Crystal data

Table 1

Symmetry codes: (i) $1 + x, y, z$; (ii) $-x, -y, 1 - z$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1092). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Barbarich, T. J., Handy, S. T., Miller, S. M., Anderson, O. P., Grieco, P. A. & Strauss, S. H. (1996). Organometallics, 15, 3776-3778.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (1997). SMART User's Manual. Version 5.045. Bruker AXS Inc., Madison, Wisconsin, USA.
- Horchler, S., Parisini, E., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1997). J. Chem. Soc. Dalton Trans. pp. 2761-2763.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
- Plenio, H. (1997). Chem. Rev. 97, 3363-3384.
- Porterfield, W. W. (1998). Inorganic Chemistry, 2nd ed., p. 214. San Deigo, CA: Academic Press.
- Qian, B., Ward, D. L. & Smith, M. R. (1998). Organometallics, 17, 3070-3076.
- Radzewich, C. E., Coles, M. P., Guzei, I. A., Young, V. G. Jr, Pink, M. & Jordan, R. F. (2000). In preparation.
- Radzewich, C. E., Coles, M. P. & Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 9384±9385.
- Radzewich, C. E., Guzei, I. A. & Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 8673±8674.
- Ruhklandt-Senge, K., Ellison, J. J., Wehmschulte, R. J., Pauer, F. & Power, P. P. (1993). J. Am. Chem. Soc. 115, 11353-11357.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.